時(shí)間序列分析(Time series analysis)是一種動(dòng)態(tài)數(shù)據(jù)處理的統(tǒng)計(jì)方法。該方法基于隨機(jī)過(guò)程理論和數(shù)理統(tǒng)計(jì)學(xué)方法,研究隨機(jī)數(shù)據(jù)序列所遵從的統(tǒng)計(jì)規(guī)律,以用于解決實(shí)際問(wèn)題。
它包括一般統(tǒng)計(jì)分析(如自相關(guān)分析,譜分析等),統(tǒng)計(jì)模型的建立與推斷,以及關(guān)于時(shí)間序列的最優(yōu)預(yù)測(cè)、控制與濾波等內(nèi)容。經(jīng)典的統(tǒng)計(jì)分析都假定數(shù)據(jù)序列具有獨(dú)立性,而時(shí)間序列分析則側(cè)重研究數(shù)據(jù)序列的互相依賴關(guān)系。后者實(shí)際上是對(duì)離散指標(biāo)的隨機(jī)過(guò)程的統(tǒng)計(jì)分析,所以又可看作是隨機(jī)過(guò)程統(tǒng)計(jì)的一個(gè)組成部分。例如,記錄了某地區(qū)第一個(gè)月,第二個(gè)月,……,第N個(gè)月的降雨量,利用時(shí)間序列分析方法,可以對(duì)未來(lái)各月的雨量進(jìn)行預(yù)報(bào)。
隨著計(jì)算機(jī)的相關(guān)軟件的開(kāi)發(fā),數(shù)學(xué)知識(shí)不再是空談理論,時(shí)間序列分析主要是建立在數(shù)理統(tǒng)計(jì)等知識(shí)之上,應(yīng)用相關(guān)數(shù)理知識(shí)在相關(guān)方面的應(yīng)用等。
時(shí)間序列是按時(shí)間順序的一組數(shù)字序列。時(shí)間序列分析就是利用這組數(shù)列,應(yīng)用數(shù)理統(tǒng)計(jì)方法加以處理,以預(yù)測(cè)未來(lái)事物的發(fā)展。時(shí)間序列分析是定量預(yù)測(cè)方法之一,它的基本原理:一是承認(rèn)事物發(fā)展的延續(xù)性。應(yīng)用過(guò)去數(shù)據(jù),就能推測(cè)事物的發(fā)展趨勢(shì)。二是考慮到事物發(fā)展的隨機(jī)性。任何事物發(fā)展都可能受偶然因素影響,為此要利用統(tǒng)計(jì)分析中加權(quán)平均法對(duì)歷史數(shù)據(jù)進(jìn)行處理。該方法簡(jiǎn)單易行,便于掌握,但準(zhǔn)確性差,一般只適用于短期預(yù)測(cè)。時(shí)間序列預(yù)測(cè)一般反映三種實(shí)際變化規(guī)律:趨勢(shì)變化、周期性變化、隨機(jī)性變化。
時(shí)間序列分析是根據(jù)系統(tǒng)觀測(cè)得到的時(shí)間序列數(shù)據(jù),通過(guò)曲線擬合和參數(shù)估計(jì)來(lái)建立數(shù)學(xué)模型的理論和方法。它一般采用曲線擬合和參數(shù)估計(jì)方法(如非線性最小二乘法)進(jìn)行。時(shí)間序列分析常用在國(guó)民經(jīng)濟(jì)宏觀控制、區(qū)域綜合發(fā)展規(guī)劃、企業(yè)經(jīng)營(yíng)管理、市場(chǎng)潛量預(yù)測(cè)、氣象預(yù)報(bào)、水文預(yù)報(bào)、地震前兆預(yù)報(bào)、農(nóng)作物病蟲災(zāi)害預(yù)報(bào)、環(huán)境污染控制、生態(tài)平衡、天文學(xué)和海洋學(xué)等方面。
一個(gè)時(shí)間序列通常由4種要素組成:趨勢(shì)、季節(jié)變動(dòng)、循環(huán)波動(dòng)和不規(guī)則波動(dòng)。
趨勢(shì):是時(shí)間序列在長(zhǎng)時(shí)期內(nèi)呈現(xiàn)出來(lái)的持續(xù)向上或持續(xù)向下的變動(dòng)。
季節(jié)變動(dòng):是時(shí)間序列在一年內(nèi)重復(fù)出現(xiàn)的周期性波動(dòng)。它是諸如氣候條件、生產(chǎn)條件、節(jié)假日或人們的風(fēng)俗習(xí)慣等各種因素影響的結(jié)果。
循環(huán)波動(dòng):是時(shí)間序列呈現(xiàn)出得非固定長(zhǎng)度的周期性變動(dòng)。循環(huán)波動(dòng)的周期可能會(huì)持續(xù)一段時(shí)間,但與趨勢(shì)不同,它不是朝著單一方向的持續(xù)變動(dòng),而是漲落相同的交替波動(dòng)。
不規(guī)則波動(dòng):是時(shí)間序列中除去趨勢(shì)、季節(jié)變動(dòng)和周期波動(dòng)之后的隨機(jī)波動(dòng)。不規(guī)則波動(dòng)通?偸菉A雜在時(shí)間序列中,致使時(shí)間序列產(chǎn)生一種波浪形或震蕩式的變動(dòng)。只含有隨機(jī)波動(dòng)的序列也稱為平穩(wěn)序列。
時(shí)間序列建;静襟E是:
、儆糜^測(cè)、調(diào)查、統(tǒng)計(jì)、抽樣等方法取得被觀測(cè)系統(tǒng)時(shí)間序列動(dòng)態(tài)數(shù)據(jù)。
、诟鶕(jù)動(dòng)態(tài)數(shù)據(jù)作相關(guān)圖,進(jìn)行相關(guān)分析,求自相關(guān)函數(shù)。相關(guān)圖能顯示出變化的趨勢(shì)和周期,并能發(fā)現(xiàn)跳點(diǎn)和拐點(diǎn)。跳點(diǎn)是指與其他數(shù)據(jù)不一致的觀測(cè)值。如果跳點(diǎn)是正確的觀測(cè)值,在建模時(shí)應(yīng)考慮進(jìn)去,如果是反常現(xiàn)象,則應(yīng)把跳點(diǎn)調(diào)整到期望值。拐點(diǎn)則是指時(shí)間序列從上升趨勢(shì)突然變?yōu)橄陆第厔?shì)的點(diǎn)。如果存在拐點(diǎn),則在建模時(shí)必須用不同的模型去分段擬合該時(shí)間序列,例如采用門限回歸模型。
、郾孀R(shí)合適的隨機(jī)模型,進(jìn)行曲線擬合,即用通用隨機(jī)模型去擬合時(shí)間序列的觀測(cè)數(shù)據(jù)。對(duì)于短的或簡(jiǎn)單的時(shí)間序列,可用趨勢(shì)模型和季節(jié)模型加上誤差來(lái)進(jìn)行擬合。對(duì)于平穩(wěn)時(shí)間序列,可用通用ARMA模型(自回歸滑動(dòng)平均模型)及其特殊情況的自回歸模型、滑動(dòng)平均模型或組合-ARMA模型等來(lái)進(jìn)行擬合。當(dāng)觀測(cè)值多于50個(gè)時(shí)一般都采用ARMA模型。對(duì)于非平穩(wěn)時(shí)間序列則要先將觀測(cè)到的時(shí)間序列進(jìn)行差分運(yùn)算,化為平穩(wěn)時(shí)間序列,再用適當(dāng)模型去擬合這個(gè)差分序列。
系統(tǒng)描述:根據(jù)對(duì)系統(tǒng)進(jìn)行觀測(cè)得到的時(shí)間序列數(shù)據(jù),用曲線擬合方法對(duì)系統(tǒng)進(jìn)行客觀的描述。
系統(tǒng)分析:當(dāng)觀測(cè)值取自兩個(gè)以上變量時(shí),可用一個(gè)時(shí)間序列中的變化去說(shuō)明另一個(gè)時(shí)間序列中的變化,從而深入了解給定時(shí)間序列產(chǎn)生的機(jī)理。
預(yù)測(cè)未來(lái):一般用ARMA模型擬合時(shí)間序列,預(yù)測(cè)該時(shí)間序列未來(lái)值。
決策和控制:根據(jù)時(shí)間序列模型可調(diào)整輸入變量使系統(tǒng)發(fā)展過(guò)程保持在目標(biāo)值上,即預(yù)測(cè)到過(guò)程要偏離目標(biāo)時(shí)便可進(jìn)行必要的控制。
用隨機(jī)過(guò)程理論和數(shù)理統(tǒng)計(jì)學(xué)方法,研究隨機(jī)數(shù)據(jù)序列所遵從的統(tǒng)計(jì)規(guī)律,以用于解決實(shí)際問(wèn)題。由于在多數(shù)問(wèn)題中,隨機(jī)數(shù)據(jù)是依時(shí)間先后排成序列的,故稱為時(shí)間序列。它包括一般統(tǒng)計(jì)分析(如自相關(guān)分析、譜分析等),統(tǒng)計(jì)模型的建立與推斷,以及關(guān)于隨機(jī)序列的最優(yōu)預(yù)測(cè)、控制和濾波等內(nèi)容。經(jīng)典的統(tǒng)計(jì)分析都假定數(shù)據(jù)序列具有獨(dú)立性,而時(shí)間序列分析則著重研究數(shù)據(jù)序列的相互依賴關(guān)系。后者實(shí)際上是對(duì)離散指標(biāo)的隨機(jī)過(guò)程的統(tǒng)計(jì)分析,所以又可看作是隨機(jī)過(guò)程統(tǒng)計(jì)的一個(gè)組成部分。例如,用x(t)表示某地區(qū)第t個(gè)月的降雨量,{x(t),t=1,2,…}是一時(shí)間序列。對(duì)t=1,2,…,T,記錄到逐月的降雨量數(shù)據(jù)x(1),x(2),…,x(T),稱為長(zhǎng)度為T的樣本序列。依此即可使用時(shí)間序列分析方法,對(duì)未來(lái)各月的雨量x(T+l)(l=1,2,…)進(jìn)行預(yù)報(bào)。時(shí)間序列分析在第二次世界大戰(zhàn)前就已應(yīng)用于經(jīng)濟(jì)預(yù)測(cè)。二次大戰(zhàn)中和戰(zhàn)后,在軍事科學(xué)、空間科學(xué)和工業(yè)自動(dòng)化等部門的應(yīng)用更加廣泛。
就數(shù)學(xué)方法而言,平穩(wěn)隨機(jī)序列(見(jiàn)平穩(wěn)過(guò)程)的統(tǒng)計(jì)分析,在理論上的發(fā)展比較成熟,從而構(gòu)成時(shí)間序列分析的基礎(chǔ)。
頻域分析 一個(gè)時(shí)間序列可看成各種周期擾動(dòng)的疊加,頻域分析就是確定各周期的振動(dòng)能量的分配,這種分配稱為"譜",或"功率譜".因此頻域分析又稱譜分析。譜分析中的一個(gè)重要是統(tǒng)計(jì)量, 稱為序列的周期圖。當(dāng)序列含有確定性的周期分量時(shí),通過(guò)I(ω)的極大值點(diǎn)尋找這些分量的周期是譜分析的重要內(nèi)容之一。在按月記錄的降雨量序列中,序列x(t)就可視為含有以12為周期的確定分量,所以序列x(t)可以表示為 ,它的周期圖I(ω)處有明顯的極大值。
當(dāng)平穩(wěn)序列的譜分布函數(shù)F(λ)具有譜密度ƒ(λ)(即功率譜)時(shí),可用(2π)-1I(λ)去估計(jì)?(λ),它是ƒ(λ)的漸近無(wú)偏估計(jì)。如欲求ƒ(λ)的相合估計(jì),可用I(ω)的適當(dāng)?shù)钠交等ス烙?jì)ƒ(λ),常用的方法為譜窗估計(jì)即取ƒ(λ)的估計(jì)弮(λ)為 ,式中wt(ω)稱為譜窗函數(shù)。譜窗估計(jì)是實(shí)際應(yīng)用中的重要方法之一。譜分布F(λ)本身的一種相合估計(jì)可由I(ω)的積分直接獲得,即 .研究以上各種估計(jì)量的統(tǒng)計(jì)性質(zhì),改進(jìn)估計(jì)方法,是譜分析的重要內(nèi)容。
時(shí)域分析 它的目的在于確定序列在不同時(shí)刻取值的相互依賴關(guān)系,或者說(shuō),確定序列的相關(guān)結(jié)構(gòu)。這種結(jié)構(gòu)是用序列的自相關(guān)函0,1,…)來(lái)描述的,為序列的自協(xié)方差函數(shù)值,m=Ex(t)是平穩(wěn)序列的均值。常常采用下列諸式給出m,γ(k),ρ(k)的估計(jì): ,通(k)了解序列的相關(guān)結(jié)構(gòu),稱為自相關(guān)分析。研究它們的強(qiáng)、弱相合性及其漸近分布等問(wèn)題,是相關(guān)分析中的基本問(wèn)題。
模型分析 20世紀(jì)70年代以來(lái),應(yīng)用最廣泛的時(shí)間序列模型是平穩(wěn)自回歸-滑動(dòng)平均模型 (簡(jiǎn)稱ARMA模型)。其形狀為: 式中ε(t)是均值為零、方差為σ2的獨(dú)立同分布的隨機(jī)序列;和σ2為模型的參數(shù),它們滿足: 對(duì)一切|z|≤1的復(fù)數(shù)z成立。p和q是模型的階數(shù),為非負(fù)整數(shù)。特別當(dāng)q=0時(shí),上述模型稱為自回歸模型;當(dāng)p=0時(shí), 稱為滑動(dòng)平均模型。根據(jù)x(t)的樣本值估計(jì)這些參數(shù)和階數(shù),就是對(duì)這種模型的統(tǒng)計(jì)分析的內(nèi)容。對(duì)于滿足ARMA模型的平穩(wěn)序列,其線性最優(yōu)預(yù)測(cè)與控制等問(wèn)題都有較簡(jiǎn)捷的解決方法,尤其是自回歸模型,使用更為方便。G.U.尤爾在1925~1930年間就提出了平穩(wěn)自回歸的概念。1943年,Η。Β。曼和Α。瓦爾德發(fā)表了關(guān)于這種模型的統(tǒng)計(jì)方法及其漸近性質(zhì)的一些理論結(jié)果。一般ARMA模型的統(tǒng)計(jì)分析研究,則是20世紀(jì)60年代后才發(fā)展起來(lái)的。特別是關(guān)于p,q值的估計(jì)及其漸近理論,出現(xiàn)得更晚些。除ARMA模型之外,還有其他的模型分析的研究, 其中以線性模型的研究較為成熟,而且都與ARMA模型分析有密切關(guān)系。
回歸分析如果時(shí)間序列x(t)可表示為確定性分量φ(t)與隨機(jī)性分量ω(t)之和,根據(jù)樣本值x(1),x(2),…,x(T)來(lái)估計(jì)φ(t)及分析ω(t)的統(tǒng)計(jì)規(guī)律,屬于時(shí)間序列分析中的回歸分析問(wèn)題。它與經(jīng)典回歸分析不同的地方是,ω(t)一般不是獨(dú)立同分布的,因而在此必須涉及較多的隨機(jī)過(guò)程知識(shí)。當(dāng)φ(t)為有限個(gè)已知函數(shù)的未知線性組合時(shí),即 ,式中ω(t)是均值為零的平穩(wěn)序列,α1,α2,…,αs是未知參數(shù),φ1(t),φ2(t),…,φs(t)是已知的函數(shù),上式稱為線性回歸模型,它的統(tǒng)計(jì)分析已被研究得比較深入。前面敘述的降雨量一例,便可用此類模型描述;貧w分析的內(nèi)容包括:當(dāng)ω(t)的統(tǒng)計(jì)規(guī)律已知時(shí),對(duì)參數(shù)α1,α2,…,αs進(jìn)行估計(jì),預(yù)測(cè)x(T+l)之值;當(dāng)ω(t)的統(tǒng)計(jì)規(guī)律未知時(shí),既要估計(jì)上述參數(shù),又要對(duì)ω(t)進(jìn)行統(tǒng)計(jì)分析,如譜分析、模型分析等。在這些內(nèi)容中,一個(gè)重要的課題是:在相當(dāng)廣泛的情況下,證明 α1,α2,…,αs的最小二乘估計(jì),與其線性最小方差無(wú)偏估計(jì)一樣,具有相合性和漸近正態(tài)分布性質(zhì)。最小二乘估計(jì)姙j(1≤j≤s)不涉及ω(t)的統(tǒng)計(jì)相關(guān)結(jié)構(gòu),是由數(shù)據(jù)x(1),x(2),…,x(T)直接算出,由此還可得
進(jìn)行時(shí)間序列分析中的各種統(tǒng)計(jì)分析,以代替對(duì)ω(t)的分析。 在理論上也已證明,在適當(dāng)?shù)臈l件下,這樣的替代具有滿意的漸近性質(zhì)。由于ω(t)的真值不能直接量測(cè),這些理論結(jié)果顯然有重要的實(shí)際意義。這方面的研究仍在不斷發(fā)展。
時(shí)間序列分析中的最優(yōu)預(yù)測(cè)、控制與濾波等方面的內(nèi)容見(jiàn)平穩(wěn)過(guò)程條。近年來(lái)多維時(shí)間序列分析的研究有所進(jìn)展,并應(yīng)用到工業(yè)生產(chǎn)自動(dòng)化及經(jīng)濟(jì)分析中。此外非線性模型統(tǒng)計(jì)分析及非參數(shù)統(tǒng)計(jì)分析等方面也逐漸引起人們的注意。